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In experiments reported elsewhere, adiabatic rapid passage (ARP) has been performed on multilevel 
electron-paramagnetic crystals having three equally spaced energy levels separated by ha>0. All transitions 
among the three levels are allowed due to crystalline electric-field mixing of the pure spin states, Simul­
taneous ARP inversion of the two coincident transitions at coo produces a negative temperature simul­
taneously on all three transitions, at co0 and 2w0. The present paper explains these results through an analysis 
of adiabatic rapid passage in a spin system having an arbitrary spin-Hamiltonian with three equally spaced 
energy levels. Previous treatments of ARP have been limited either to the multilevel case with pure spin 
states or to the two-level case with mixed states. In the present analysis, the 3X3 density matrix is trans­
formed to an equivalent matrix whose equation of motion contains a Hamiltonian which is real and con­
stant, even with the rf perturbation applied. The transformed matrix is expanded in terms of nine orthonor-
mal Hermitian basis matrices. Three of the expansion coefficients are directly related to state populations. 
The time variation of the expansion coefficients is calculated for ARP conditions. The transition probabili­
ties of the two wo transitions are not required to be equal. The final values of the three relevant expansion 
coefficients indicate negative temperatures on all three transitions. 

INTRODUCTION 

MOST experimental work on adiabatic rapid passage 
(ARP) in electron-paramagnetic solids has been 

concerned with magnetic resonance either in two-level 
systems1-4 or in two-level transitions of multilevel 
systems.5-7 This work has been conceptually based on 
the motion of the macroscopic magnetization vector as 
described by the Bloch equations.8 Strictly speaking, the 
Bloch equations are applicable only to solids for which 
the crystalline electric field does not appear as a term in 
the spin Hamiltonian. For such cases the undamped 
portions of the Bloch equations, 

(<Z/<B)<M>=7<M>XH, (1) 

are equivalent to the time-dependent Schrodinger equa­
tion which describes the motion of the pure spin states 
in the presence of the external magnetic field. Equations 
(1) then lead to ARP inversion of (Mz) for both the two-
level and the multilevel cases. 

However, when a crystalline term appears, the expec­
tation components (Mx),(My), and (Mz) of the mag­
netization vector no longer obey Eqs. (1) unless the 
operator for the crystalline term commutes with the 
vector spin operator.9 For this reason, Eqs. (1) are 
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not usually valid for solids. When they are not, the 
Schrodinger equation can still be cast in a form identical 
to Eqs. (1) as long as the rf fields induce transitions 
between only two states.10 The two-state motion is 
given by 

(d/dt)r=«>Xr. (2) 

Components of the vector r are appropriate combina­
tions of the state coefficients which describe the time 
development of the complete quantum state for the two 
levels involved, when that state is expanded in terms of 
the two corresponding stationary eigenstates of the 
stationary spin Hamiltonian. This description has 
allowed the Bloch equations to be conceptually used by 
workers who have performed ARP experiments on 
isolated pairs of energy levels in multilevel crystals. 

A notable exception is an experiment of Wagner, 
Castle, and Chester11,12 which was performed at a point 
in the paramagnetic spectrum where the crystalline and 
Zeeman terms were comparable, and where three succes­
sive energy levels (EhE2,Ez) were equally spaced. An 
adiabatic rapid passage was simultaneously performed 
on the 1-2 and 2-3 transitions. Before passage, the 
system was in equilibrium with a thermal bath, but 
after passage, each of the three transitions (1-2, 2-3, and 
1-3) achieved a negative spin temperature. The author 
has continued this work,13 and has found, under the 
experimental condition (£3—E2) = (E2—E1) < kT\,&th, 
that the negative spin temperatures are approximately 
equal. Since both experiments were performed under 
conditions where the crystalline and Zeeman terms were 
comparable, and where transitions were simultaneously 

10 R. P. Feynman, F. L. Vernon, Jr., and R. W. Hellwarth, 
J. Appl. Phys. 28, 49 (1957). 

11 P. E. Wagner, J. G. Castle, Jr., and P. F. Chester, in Quantum 
Electronics, edited by C. H. Townes (Columbia University Press, 
New York, 1960), p. 509. 

12 P. E. Wagner, J. G. Castle, Jr., and P. F. Chester, J. Appl. 
Phys. 31, 1498 (1960). 
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induced between more than two spin states, neither 
Eqs. (1) nor Eqs. (2) are applicable. The experiments 
therefore pose a new problem in magnetic resonance. 

Wagner, Castle, and Chester11 postulated an explana­
tion of the simultaneous ARP inversion phenomenon. 
They assumed, following Redfield,14 that spin tempera­
tures can be denned for the 1-2 and 2-3 transitions in 
the rotating frame, even in the presence of the large rf 
field required for ARP. They further assumed that spin-
spin coupling between the superposed lines holds them 
at the same spin temperature throughout the passage, 
and thereby concluded that if either transition is in­
verted by ARP, the other will be inverted by spin-spin 
coupling to the first. No theoretical analysis has been 
presented in support of their argument. 

The author questions the validity of their approach in 
cases where a crystalline term appears, for the following 
reasons. Redfield's spin Hamiltonian contains Zeeman 
and spin-spin terms but does not contain crystalline-
electric terms. He was therefore able to remove the rf 
time dependence in the Hamiltonian by transforming 
the problem to a frame which rotates with the circularly-
polarized rf field. Had crystalline terms been present, 
the rotating-frame transformation would not have 
removed the time dependence. Instead, it would have 
introduced additional rf variations due to the static-
Zeeman or static-electric terms, or both, depending on 
the choice of rotation axis. Therefore, Redfield's calcula­
tion does not directly apply to the simultaneous ARP 
experiments, and the assumption that a rotating-frame 
spin temperature can be defined for these experiments 
is unsupported if the transformation is to be performed 
in real space. Some other transformation which sup­
presses the time dependence might possibly lead to the 
definition of a spin temperature for large rf fields, but 
it would be closely linked with the three-state dynamics 
of the system of noninteracting spins, which is the 
subject of this paper. 

In the following analysis we treat the ARP behavior 
of a triplet of spin states having equally-spaced energy 
levels. The system is driven by a weak, sinusoidally 
time-dependent perturbation of angular frequency 
co ~coo, where fiooo is the energy spacing between adjacent 
levels. An adiabatic passage is simulated by slowly 
sweeping co through co0, with co0 fixed, such that Aco 
= coo—co adiabatically passes through zero. The rapid 
condition of ARP is satisfied by assuming that the 
total passage time is much smaller than all relevant 
spin-lattice relaxation times. The three-state analysis is 
not restricted to a simple triplet. If no other transition 
frequencies are near o>0, it is equally applicable to three 
simultaneously resonant levels in a general (25+1)-
state multiplet for which S> l.15 

The approach taken in this paper is essentially an 
extension of Eq. (2) to three equally spaced levels. 

14 A. G. Redfield, Phys. Rev. 98, 1787 (1955). 
16 R. J. Morris, see Ref. 9, Chap. III . 

Density matrix formalism is used, the matrix representa­
tion of operators being that for which the static spin 
Hamiltonian is diagonal. Use of this representation 
implies that the eigenstates of the static spin Hamil­
tonian are basic to the subsequent calculation of 
perturbations induced by a weak rf field. The chosen 
form of the static spin Hamiltonian is arbitrary in order 
that both Zeeman and crystalline electric terms be in­
cluded in a general fashion. Solutions for the energy 
levels and rf perturbation matrix elements of particular 
paramagnetic crystals are presumably available else­
where in the literature. 

The first half of the paper is devoted to obtaining an 
equation of motion analogous to Eq. (2), and the second 
half to its ARP solutions. In our treatment the three-
dimensional vector r of Eq. (2) is replaced by a nine-
dimensional vector p. The components pj of 9 are 
appropriate combinations of the density-matrix ele­
ments. Both the equation of motion for 9, Eq. (33), and 
the one for r, Eq. (2), define orthogonal transformations 
in their respective vector spaces. They both possess 
time-dependent solutions which are precessions around 
their steady-state solutions. As a result, the ARP motion 
of 9 will be similar to that of r. 

The components of 9 are defined such that three of 
them (po, P3, and PA) collectively specify the three-state 
populations. Solutions are obtained for these compo­
nents at the end of an adiabatic passage in terms of their 
initial values. The predicted final-state populations 
agree with existing experimental observations. Because 
of this agreement, it appears that the phenomenon of 
simultaneous ARP inversion is a property to be associ­
ated with the dynamics of individual three-level static-
field spin systems and that it does not depend on extra­
neous spin-relaxation processes.11 

QUANTUM-MECHANICAL MODEL 

We consider an ensemble of identical paramagnetic 
ions of effective spin 5 = 1 situated in a crystalline solid 
and subjected to a uniform static magnetic field, 
identical static crystalline electric fields, and a uniform 
rf magnetic field. The Hamiltonian operator consists of 
two parts16: 

H°p(t)=Ho0»+V°»(t). (3) 

The operator J3"0
op is the static spin Hamiltonian which 

includes the effects of crystalline electric fields as well as 
the static Zeeman energy. The operator Fop accounts 
for the Zeeman energy of the spins when they are sub­
jected to a rf magnetic field. Since both terms in Hov 

correspond to physical observables, Hop is a Hermitian 
operator. 

We assume that Hoop has three eigenstates \\pj) with 
energy eigenvalues Eh such that 

ffo^lfcHEilfc), (4) 
16 We designate an operator by A°v and the corresponding 

matrix by A. 
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where j=p, q, r. We assume that the three-energy eigen­
values Ep, Eqy En are equally spaced with 

Er=fio)o, 

£ a = 0 , 

Ep— — fiwQ. 

(5a) 

(5b) 

(5c) 

The arbitrary zero reference level of the energy scale 
has been chosen such that Eq=0. 

The rf magnetic field produces a time-dependent 
interaction Fop(/) which is assumed to be weak com­
pared to IZoop and sinusoidally varying at an angular 
frequency OQ~OOQ. We assume that the rf magnetic field is 
linearly polarized and is given by Hi cosw/. The rf 
Zeeman energy operator of each ion is then 

T7"OPW = ^HI-S°PCOSCO/, (6) 

diagonal elements. However, since the motion of these 
elements is closely coupled to that of the off-diagonal 
elements, we must deal with the matrix as a whole. For 
our case p is a Hermitian matrix with three rows and 
columns, and contains nine real variables which are in 
general distinct. Only eight of these variables are inde­
pendent since the sum of the diagonal elements must be 
unity in order to conserve probability. If the spin 
system is in thermal equilibrium, with Vop(t)^0, the 
density matrix is diagonal in our representation and 

p„ = exp(-Ej/kT). 

The time variation of p is obtained directly from the 
time-dependent Schrodinger equation: 

where g is the effective gyromagnetic ratio, fi the Bohr 
magneton, and Sop the effective spin operator. 

The analysis ignores the various interactions between 
the paramagnetic spins and the crystal lattice, and be­
tween the spins themselves. The present calculations 
apply to any assembly of identical quantum systems, 
each of which has a number of energy levels, three and 
only three of which are equally spaced with spacing fiaio, 
where the quantum systems are subjected to a weak 
sinusoidal perturbation of frequency w~co0. 

DENSITY MATRIX AND EQUATIONS OF MOTION 

The quantum dynamics are calculated by means of 
the density-matrix formalism.17,18 This method includes 
a statistical average over the assembly of expectation 
values for the individual ions and thereby yields infor­
mation about observable macroscopic quantities. The 
formalism greatly simplifies the calculations since it 
allows one to handle a large number of dynamical 
variables in a systematic fashion. The physical signifi­
cance of the individual density-matrix elements de­
pends on the representation in which the matrix is 
calculated. We use the representation in which Ho is 
diagonal. The elements of the density matrix are, by 
definition, 

P^=(^|PO PI^), (?) 

where pop is the density operator.16 In this representa­
tion, the diagonal elements pa are the ensemble-
averaged occupation probabilities for the states | ^ ) . If 
N is the total number of ions in the ensemble (i.e., in 
the crystal sample), the population % of a particular 
state | \pj) is 

n^Npjj. (8) 

The off-diagonal elements p^ give information about 
the ensemble-averaged phases of the quantum states. 
The matrix p is Hermitian. 

We are principally interested in the behavior of the 
17 U. Fano, Rev. Mod. Phys. 29, 74 (1957). 
18 D. ter Haar, Rept. Prog. Phys. 24, 304J1961). 

dp 1 

it ifi 
(Hp-pH). (9) 

Here H is the matrix of Hov(t) when calculated with 
respect to the eigenstates of HQ°P. Since p and H are 
Hermitian matrices containing three rows and columns, 
Eq. (9) is equivalent to a system of nine coupled differ­
ential equations in nine real variables, eight of which 
are in general independent. 

The elements of H are 

njk(t) = (f,\n°*(t) \fk) = Hm+Vjk(t). (10) 

The matrix Ho is diagonal with real diagonal elements 
Ej, and V contains elements most of which are complex 
and all of which are in general nonzero. The elements of 
V are: 

VifcW = g/3<^|Hi-S°p|^> co$a)t=gf3Hwjk cosco/, (11) 

where Hi= | Hi | , and fxjk is the magnetic dipole-matrix 
element calculated between states |^y) and |̂ &) for an 
rf field of unit amplitude. The complex quantities /iy& 
have magnitudes of order unity or less, and are de­
pendent upon the particular transition j-k, upon the 
direction of Hi, and upon the point in the paramagnetic 
spectrum for which they are calculated. We further 
write: 

FiJb(0 = foiMi*(e*4-<r*9, (12) 

where «i= (l/2h)gPHi. 

TRANSFORMATION OF EQUATIONS OF MOTION 

Solution of Eq. (9) will be simplified if we introduce 
the following transformation: 

pf(t) = eiA(atp(t)e-iA^, (13a) 

V'{i) = eiA^V(t)e~iA(at, (13b) 

where 

Ho 
^4=—.— 

flO)0 

' - 1 0 

0 0 

. 0 0 

0̂  

0 

L 

(13c) 
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Computation of the derivative of p' leads to 

dpf/dt= (\/ifi)l(tiAo)A + Vf)pf- p'{h&o>A + Vf)-]. (14) 

The parameter Aco=coo— co specifies the extent to which 
the driving frequency co differs from the magnetic reso­
nance frequency coo of the p-q and q-r transitions. We 
shall assume that co is close enough to co0 that Aco is much 
smaller than either co or coo. 

Except for the factor Aco, the transformation has 
accomplished the removal of the unperturbed Hamil-
tonian Ho from the equations. We shall also see that it 
has removed the time dependence from some of the 
terms in the perturbation matrix V. This transformation 
is analogous to the rotating-frame transformation that 
is commonly used in magnetic resonance problems 
where the spin Hamiltonian contains only Zeeman 
terms. The advantage of the formulation is that the 
equations of motion explicitly contain the parameter 
Aco. By solving for the motion of pr assuming that Aco is 
arbitrary and fixed, and then by considering the be­
havior of p' as Aco slowly passes through a succession of 
quasifixed values, we will be able to obtain the occupa­
tion probabilities of the states p, q, and r at the end of 
an adiabatic passage in terms of their initial values. The 
transformed matrix pf will be sufficient for this purpose 
because its diagonal elements are identical with those of 
the original matrix p: 

Pik^P,**"^*-***', (15a) 

Py/=P#- (15b) 

The matrix equation (14) is a system of coupled 
differential equations with time-varying coefficients. 
The elements pjk' may be regarded as coordinates in an 
oscillatory system with nine degrees of freedom. In this 
picture the transformed unperturbed Hamiltonian 
fiAooA determines the natural oscillations of the system, 
and the perturbation V drives the oscillations via a set 
of sinusoidally time-varying coefficients in the equations 
of motion. 

The natural frequencies of Eq. (14) can be identified 
by setting V'=0. Computation of the commutator 
(Ap'~p'A) leads to the following motion: 

Pn / ==P22 / =P33 / =0, 

P12/(0 = P 1 2 , ( 0 ) ^ - S 

P23 '(0 = P 2 3 / ( 0 ) ^ A ^ , 

(16a) 

(16b) 

(16c) 

(16d) 

The natural frequencies are Aco and 2Aco which are both 
very small compared to co and coo. 

We also determine the driving frequencies of V. From 
Eq. (13b), we have 

Vjk= Vjkei(aU"-Akk)t. 

Using Eq. (12) this becomes 

V$k'= ^coiM^Ce^^^'-^^^'+e^^"-^^-1^]. (17) 

If we denote the driving frequencies by 

vjk± = u(Ajj-Akk±l), (18) 

and note that App^~\, Aqq=0, and Arr=l, we find 
that vpq+, vqp^, vqr+, and vrq~ are zero, and that the 
other frequencies present are ±co, ±2co, and ±3co. 

We shall retain only the zero-frequency terms of Vf 

since the other terms have frequencies which are sub­
stantially different from the natural oscillation fre­
quencies and will, therefore, have a negligible effect on 
the motion, provided the perturbation is small. Dis­
carding the high-frequency terms is analogous to 
neglecting the counter-rotating component of a linearly 
polarized transverse driving field in a simple magnetic 
resonance problem. For our case the procedure may be 
rigorously justified to first order in the perturbation by 
a method from the theory of nonlinear oscillations. 

Suppose the matrix elements pik
r are the components 

%i of a vector x in a nine-dimensional vector space. When 
I Aco| <coi«co, Eqs. (14) have the form: 

<V^=wiX>^Xs(x). (19) 

Here coi is assumed to be small and the components of 
the vector Xs(x) do not explicitly depend on time. The 
quantities v8 are the different values taken by the fre­
quencies vjk±- One of these is zero while all the others 
have magnitudes much greater than coi. Equation (19) 
is the standard form discussed at length by Bogoliubov 
and Mitropolsky.19 These authors show that the ap­
proximate solution to Eq. (19) is, to first order in coi, 
the same as the solution of 

dx/dt = coiXQ(x), (20) 

where X0(x) is the vector coefficient of the zero-fre­
quency term in the summation of Eq. (19). 

We may therefore replace the time-dependent matrix 
V'(t) by a constant matrix V" in which all elements are 
zero except those that correspond to the constant terms 
in V'(t). The new matrix is 

F"=a«i 
" o 
Vqp 
0 

f*pq 

0 »qr 
0 

(21) 

In general, the elements in V" are all complex, but we 
need not work with a complex driving matrix. We write 
the complex elements of V" in terms of their magnitudes 
and phases: 

Vpq"= f^0JlfJLpq= fUaiMpqe^PQ , 

Vtgp"=faayigp=ii<aiMpqeri*pii, 

Vqr"=fio)ifjiqr=fio)iMqre
i<t,Qr 9 

= ficciMore~~i<}>ar, 

(22a) 

(22b) 

(22c) 

(22d) 
19 N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic Methods 

in the Theory of Non-Linear Oscillations, translated from Russian 
(Hindustan Publishing Corporation, Delhi, India, 1961), Chap. 5. 

Vrq"=fi !C0i/i r g = 
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In these equations, Mpq and Mqr are real numbers. We 
define a 3X3 diagonal matrix C whose only nonzero 
elements are Cpp=+<t>pq and Crr= — <t>qr, 

five have been devised by the author such that they are 
each orthogonal to the first four and to each other. 

Cjl= 8jl(8jp(l>Pq— $jr<l>qr) • 

We define a new transformation as follows: 

pe=e-
iCp'e+iC, 

ye—e-icytfe+ic > 

(23) 

(24a) 

(24b) 

Because of the definition of p', the diagonal elements of 
pe are p#e=Pij for j=p, q, r. They are the average 
occupation probabilities for the states \\{/p), \\{/q), and 
|^v), respectively. The matrix elements of Ve may be 
obtained by using Eqs. (22), (23), and (24b), which 
gives 

f" 0 Mpq 0 " 
Ve=fio)i\ Mpq 0 Mqr 

L 0 Mqr 0 _ 

We take the time derivative of Eq. (24a), use Eq. 
(14) with V replaced by V", and define a new matrix 
Hoe=fiAo)A. The resulting equation of motion for pe is 

dpe 

dt 

1 
--(H'p'-p'H'), 
ift 

(25) 

where He=Hoe-{-Ve is a real, constant matrix. The 
matrices pe and He may be regarded as the effective 
density matrix and the effective Hamiltonian. Equa­
tions (25), which relate them, are sufficiently reduced 
for our problem. The remainder of this paper is devoted 
to their solution. 

EXPANSION IN BASIS MATRICES 

A powerful method exists for solving problems of 
density matrix dynamics.17 One expands the matrix as a 
series in a complete set of orthonormal Hermitian basis 
matrices Ui. The coefficients of expansion are real 
numbers, and their time variation reflects the motion 
of the original matrix. If the basis matrices are judi­
ciously chosen, one or more of the expansion coefficients 
will have a physical significance useful for a particular 
problem. The basis matrices are orthonormal in the 
sense that 

T r ( Z 7 ^ ) = 5 l7. (26) 

If the series expansion is to be a complete description 
of the original matrix, there must be as many different 
expansion coefficients as there are independent real 
parameters in the original matrix. For an arbitrary 1X1 
Hermitian matrix, the set of basis matrices is a complete 
set (for purposes of expansion) when it contains I2 

orthogonal matrices. For describing the motion of the 
3 X 3 effective density matrix pe, we need a set of nine 
3X3 orthonormal Hermitian basis matrices. Such a set 
is given below. The first four matrices are the identity 
matrix and the three Pauli-spin matrices. The remaining 

tfo=-
v3 

1 

2 

tfa=-

1 

V2 

u4=-

ri o on 

0 l o 

lo o U 

0 l o^ 

1 0 1 

L0 1 0J 

0 - 1 

1 0 

LO 1 

1 0 

0 0 

0 0 

n o o-
0 - 2 0 

to o u 
1 

1 

v2 

0 1 

- 1 

0 J 

0 1 

v2 

0 

•U 

1 

V6 

r0 0 

Ut=-

u6=-
2 

1 
U7 = — 

U»=-
y/1 

0 

- 1 

r o l 

l o 

i o l 

0 0 1 

0 0 0 

11 0 0J 

0 0 1' 

0 0 0 

- 1 0 0J 

(27a) 

(27b) 

(27c) 

(27d) 

(27e) 

(27f) 

(27g) 

(27h) 

(27i) 

We expand the effective density matrix pe in a series 
of the matrices Z7&. 

Pe=j:pkUk. (28) 

k 

The quantities p& are real numbers, not matrices. 

Pi=Trace (peUi). (29) 
The coefficients pi are the projections of the effective 
density matrix pe onto the various orthogonal basis 
matrices C/». 
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Three of the basis matrices are diagonal, namely 
(7o, Uz9 Ui. The corresponding expansion coefficients 
(po,P3,P4) have direct physical significance. The first 
coefficient is 

Po= (l/v3) (ppp+pqq+prr). (30a) 

This quantity is a measure of the total number of spins 
in states \\//p), \\pq), and \\f/r), and will prove to be 
independent of time. The other two coefficients are 

P 8 = ( l / ^ ) ( p p p - P r r ) , (30b) 

P4==6-1/2(ppp— 2pqq+prr) 

= ^~l/2L(ppp- Pqq)- (Pflfl— Prr)~]. (30c) 

These two quantities are measures of population differ­
ences and can be directly observed in magnetic 
resonance experiments. The first of these (p3) is the 
population difference for the outside pair of levels. We 
shall see that the equations of motion predict that pz is 
inverted under conditions of simultaneous adiabatic 
rapid passage. 

MOTION OF EXPANSION COEFFICIENTS 

The time dependence of pe can be converted into 
motion of the set of expansion coefficients pi. To do so, 
we insert Eq. (28) into Eq. (25) and define a new, 
antisymmetric, real matrix Q as follows : 

1 
Qifc= TmcetH'iUjUk- UkUsy]. (31) 

ih 

The equations of motion for the expansion coefficients 
of Eq. (28) then become 

pj^HltijkPk. (32) 
k 

Suppose we define the coefficients p» to be the compo­
nents of a column vector g in a nine-dimensional vector 
space. The equation of motion for g is 

dg/dt=&g, 
(33) 

(g+dg)=(l+ttdt)g. 

Since ft is antisymmetric and real, (1+QJ/) is an 
infinitesimal orthogonal transformation on g.20 An 
orthogonal transformation leaves scalar products un­
changed. Therefore, in the nine-dimensional space, 
lengths of vectors and angles between them are constant 
as the vectors move in the space, provided that they 
satisfy Eq. (33). If gc is a solution of Eq. (33) which is 
constant in time, and if g is any time-dependent solu­
tion, the length of g and the angle between 9 and gc are 
both constants of the motion. We may therefore view 
all time-dependent solutions g as precessions about the 
steady-state solution gc. 

20 H. Goldstein, Classical Mechanics (Addison-Wesley Publish­
ing Company, Inc., Reading, Massachusetts, 1959), pp. 124-127. 

1 2 3 4 5 6 7 8 

0 

- A 01 

0 

1 ° 
0 

0 

0 

-v2 

A u) 

0 

V| 

7 3 V 2 

0 

0 

-v8 

0 

0 

~ v i 

0 

0 

0 

v2 

0 

0 

0 

-73 v2 

0 

0 

0 

- / 3 V, 

0 

0 

0 

0 

0 

0 

0 

Aw 

0 

v, 

0 

0 

-v2 

-73V, 

-Aw 

0 

-v, 

0 

0 

v2 

0 

0 

0 

v, 

0 

2Aw 

vTI 
0 

0 

0 

-V, 

0 

-2Aw 

0 

FIG. 1. The matrix a 

To evaluate 12, we expand the effective Hamiltonian 
in a series of the matrices Uk 

H<=Y,hkUk, (34) 
k 

where hk=Tia,ce(HeUk). The two terms of He have the 
simple expansions 

H0
e=hU,= -v2McoJ73 , (35a) 

V'=h1U1+hU,=^fiV1U1+^J2fiV2Ufi. (35b) 

We have here defined two new quantities, Vi and V2. 

Vi= (coi/^Z) (Mm+Mqr), (36a) 

F 2 = («i/v2) (Mm-Mqr). (36b) 

The various elements in Q are obtained by evaluating 
the traces in Eq. (31). To do this, we use the values of 
the commutators (UjUk— UkUj) which are presented in 
the Appendix. The commutators are all either zero or a 
constant multiple of some one basis matrix, except in 
two cases where they are a linear combination of two 
basis matrices. Because He is composed of only three of 
the basis matrices many of the commutators are 
orthogonal to He. 

Using the expansion 

and the commutation relationships, we obtain the 
matrix elements of 2 shown in Fig. 1. The row and 
column containing elements O;o and %k have been 
omitted because all of these elements are zero. Since all 
elements 120̂  are zero, po=0, which means that the total 
occupation probability for the states \$p), \\pq), \\pr) is 
a constant of the motion. Only the coefficients pi, 
p2, • • •, ps are dependent on time. Thus it is sufficient 
to work with an 8X8 matrix Q and the corresponding 
system of eight coupled differential equations. 

Neglecting the trivial equation p 0 =0, Eqs. (32) 
become 

pi=Acop2+ V2p8, (37a) 

p2= — Awpi— F1P3—v3V2p4+F2p7, (37b) 

P3 = F1P2— F 2 p6, (37c) 
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FIG. 2. Adiabatic passage Inversion in the first space for Mpq = Mqr. 

P4=v3F 2 p 2 -v3Fip 6 , (37d) 

p6=—Acope— Vip8, (37e) 

Pe= F 2p 3+v3 Fip4+Acop8+ Fip 7 , (37f) 

P7= — F2p2— Vip%— 2Acop8, (37g) 

P8=-F 2 pi+Fip 5 +2Acop7. (37h) 

These equations determine the dynamical behavior of 
the system. We investigate their solution under some 
special conditions. 

SOLUTION FOR EQUAL PERTURBATION 
MATRIX ELEMENTS 

When the matrix elements Mpq and Mqr are equal, 
F 2 is zero, and Eqs. (37) break into two uncoupled sets. 
The problem in an eight-dimensional space reduces to 
two independent problems in smaller spaces. 

First space: 
Pi=Acop2, (38a) 

p2=— Acopi— Vipz, 

P3= Fip2. 

Second space: 

P4=— VJFipe, 

P 5 = ~ Awp6— Fips, 

P6 = V5FiP4+Aa>P5+FiP7, 

p1== — Vip%— 2Acop8, 

(38b) 

(38c) 

(39a) 

(39b) 

(39c) 

(39d) 

P8=Fip5+2Acop7. (39e) 

We consider the motion in the first space. Equations 
(38) have the form of Eq. (33), where g is now a three-
element column vector (pi,p2,P3). Since the matrix 0, 
which corresponds to Eqs. (38), is antisymmetric and 
real, the quantity 

M 2 = Pi2+P22+P32 

is a constant of the motion. Also, all time-dependent 
solutions of Eqs. (38) are precessions about the steady-
state solution. The general solution to Eqs. (38) is 

Pl=(Aa)/TF)C2sinlF^ 
+ (Aa)/Fi)C3 cosWt- (Fx/Aco)f3, (40a) 

p2=C2 cosWt- (TF/Fi)C3 sinJF/, (40b) 

p,=Cs cosWt+(V1/W)C2 sinTF/+r3. (40c) 

Here, W^=[Fi2+(Aco)2]1/2 and C2, C3, and r3 are three 
arbitrary constants which are determined by initial 
conditions. 

We consider ARP inversion in the three levels, still 
under the equal-matrix element or F 2 = 0 condition. We 
assume that the system is initially in a state which is 
characterized by a diagonal density matrix, and an rf 
magnetic field is applied whose frequency is off reso­
nance such that (Ao?)2^>>Fi2. At ^=0, pi and p2 are zero, 
and p3 has a particular initial value p3°, which leads to 
the following initial constants: 

r3=[(F1/Aw)2+l]-W, 

c2=o, 
C8=(Fi/Ao>)V3. 

(41a) 

(41b) 

(41c) 

For (Fi/Aco)2«l, r3~p3°, and consequently C3«p3°. 
Since C2 is zero and C3 is effectively zero, application of 
the off-resonance driving field does not appreciably 
excite the oscillatory solutions. Equations (40) show 
that pi and p2 are negligibly small for ^>0, provided 
(Aco)2^>Fi2 and therefore the quantity | g>| is essentially 
equal to the initial population difference p3°. 

Now, suppose we slowly sweep the driving frequency 
through the magnetic resonance frequency, or vice 
versa, so that Aw passes through zero. If the sweep is 
slow enough, the exact motion is very nearly given by 
the steady-state solution when that solution is used for 
each value of Aco in the sweep. The steady-state 
solution is 

p1=~-(F1/Ao))r3 , (42a) 

P2=0, (42b) 

P3=*-3. (42c) 

When Aw is slowly swept, we replace the steady-state 
solution, which is exact for fixed Aco, by a quasisteady-
state solution. We know that \Q\ remains constant 
throughout such a sweep. Assuming C2 and C3 are zero 
for all values of Aco, the quantity | p | 2 is given by 

L (Aco)2 J 
(43) 

Using the quasisteady-state solution and the condition 
191 = constant, we calculate the component r3 of g for 
each value of Aco, assuming that the sweep takes Aco from 
one side of resonance to the other, and that both the 
initial and final values of Aco are sufficiently far off 
resonance that each satisfies the inequality (Aco)2»Fi2. 

Applying the initial condition \g\ =p3° to Eq. (43), 
we obtain 

±(Aco/F0 

[l+(Aco/F1)2]1 /2 
•P3U (44) 
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This relation is plotted in Fig. 2. The choice of sign 
depends on whether Aw is initially negative or positive. 
Since initially f3=P3°, we take the negative sign if Aco is 
initially negative and the positive sign if Aco is initially 
positive. In particular, when Aco is initially a large 
negative value and is slowly swept through resonance, 
rz approaches the final value — p3°, and the p-r popula­
tion-difference inverts. 

Use of the quasisteady-state solution is justified by 
the assumption that the passage through resonance is an 
adiabatic one. That is to say, the passage is assumed to 
be slow enough that the quasisteady-state solution is a 
good approximation to the exact behavior. I t can be 
shown15 that the adiabatic condition on the passage rate 
d(A<a)/dt is the following: 

|i(A»)/a|«[wM8]. (45) 

We turn to the second space: Eqs. (39). The general 
solution, which is given elsewhere,15 consists of a com­
plex precessional motion superimposed on a steady-
state solution. We expect the precession to be negligible 
in an adiabatic passage with appropriate initial condi­
tions; the steady-state solution should be sufficient. We 
will denote the steady-state solution by pi=r* (i=4 to 8). 
The components r% and r8 are zero, and the nonzero 
components r4, n, r7 are related thus: 

2v3(Aa;)Fi 
f5== r4? 

[F1
2-2(Aco)2] 

r7 = r4. 
[Fi2-2(Aco)2] 

In the absence of precession, the quantity 

4 

is simply (r£-{-r£-\-rf) 

4[T1
2+(Aco)2]2 

(46a) 

(46b) 

[ ^ - 2 (Aco)2]2 

We denote the initial value of p4 by a quantity p4°, 
corresponding to (Aco)2;»Fi2, and obtain 

r 4 = -
2(Aco/Fi) 2- l 

2[(Aco/F 1 ) 2+l] ' 
-Pi" (47) 

The negative sign is taken in the square root, because 
the expression multiplying p4° is an even function of Aco. 
Equation (47) is plotted in Fig. 3. Note that r4 halfway 
inverts midway through passage, but reinverts as the 
passage is completed. There is no net inversion of p4 in 
a complete adiabatic passage when 72=0 . 

Having solved for the expansion coefficients p4- within 
the two spaces in an adiabatic passage, the state popula­
tions after passage can be obtained directly. We denote 

Aw/V, 

FIG. 3. Adiabatic passage in the second space for Mpq = Mqr. 

the values of the expansion coefficients before and after 
passage by p / and p / , respectively. From the above 
discussion, we have 

P</=po°, 

P3 /==— P3°, 

P 4 / = + P 4 ° . 

(48a) 

(48b) 

(48c) 

nq
f=nq°, 

r — Mp • 

These expansion coeffic'ents are given in terms of the 
diagonal density matrix elements by Eqs. (30), which 
are in turn related to the state populations by Eq. (8). 
If the populations before and after an adiabatic passage 
are denoted by n? and n/, respectively, Eqs. (48) lead 
to the result 

n/=nr\ (49a) 

(49b) 

(49c) 

The populations of states p and r interchange, and the 
population of state q remains the same. 

SOLUTION FOR ONE-PERTURBATION 
MATRIX-ELEMENT ZERO 

We assume that the element Mqr is zero and that Mpq 

is nonzero. Then F 2 = Vh and Eqs. (37) become 

Pi=Acop2+Fip8 , (50a) 

p 2= — Aojpi— Fip3—V3Vip4+ Vip7, (50b) 

P 3 = F i p 2 - F i p 6 , (50c) 

p 4=VJ7ip2-VJ7ip«, (SOd) 

p5 = — Awpe— Vip8, (50e) 

Pe = F i P 3 + v 3 F i p 4 + AcoP6+ V1P1, (50f) 

Pi = ~ Vip2— VIPQ— 2Acop8, (50g) 

P8= - Vipi+ Vipb+2AuP7. (50h) 

I t is useful to define three quantities p / , p2', and p3
r as 

follows: 

P l '= ( l /V2)(pH-p5) , (51a) 

p 2 ' = ( l / v 3 ) ( p 2 - p 6 ) , (51b) 

p3 ' = i(P3+v3p4). (51c) 
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From Eqs. (30b) and (30c), we see that p8 '=(l/v2) 
X(ppp—pqq) and is therefore a measure of the popula­
tion difference for the p-q transition. By adding the 
proper pairs of Eqs. (50), we can cast the dynamical 
equations in the form 

Pi'=Ao>p2', 

p2 '=-Acopi '-2\£Fip3 \ 

pY=2V2TlP2'. 

(52a) 

(52b) 

(52c) 

These equations are precisely the same as Eqs. (38), 
provided we make the following notational replace­
ments: pi—>pi', p2-+p<{, P3—>Pz, and Fi—»2v27i. 
Therefore, p3' inverts in an adiabatic passage, which 
implies that the population difference (np— nq) inverts. 
The population of state r is not affected by the passage 
if Mqr=0. Therefore, the populations of states p and q 
interchange, and the population of state r remains the 
same. 

The other case (Mpq=0) is treated in a similar 
fashion. When Mpq=Q, we define three appropriate 
quantities: 

Pi"= (1/V2) (pi -p , ) , 

P2"=(l/V2)(p2+p6), 

P3"=4(P3-^P4) . 

One can show that p3" inverts in an adiabatic passage, 
and thus the populations of states q and r interchange 
while the population of state p remains the same. 

The foregoing two-level dynamics are to be expected, 
because when either Mpq or Mqr is zero, the whole 
problem can be solved on a two-level basis.10 

SOLUTION FOR THE GENERAL CASE 

We assume that Mpq and Mqr are unequal and are 
both nonzero. We use the general Eqs. (37). Although 
there are eight equations, only six of these are linearly 
independent. The dependent relations are Eqs. (37c) 
and (37d). One can readily verify the following depend­
ence relations: 

Vi V2 
P3 = PlH P5, 

Aco Aco 

2\#F2[(Aco)2-Fi2] 
P 4~ Aco[2(Aco)2- (F!2+F2

2)]P1 

2V3Fi[(Aco)2-F2
2] 

(53) 

Aco[2(Aco)2-(F1
2+F2

2)] 

\£(Aco)(F2
2-Fi2) 

AcoC2(Aco)2-(F1
2+F2

2)]' 

-P5 

-P7- (54) 

Consider possible steady-state solutions for which 
there is no precession. Let (rx, r2, • • •, rs) be the values 
of (pi, p2, •••, p8) which satisfy Eqs. (37) when the 

time derivatives are zero. Then we have 

Acor 2+ V2r$=0, (55a) 

Aan+Vif 3+VJJV4- V2r7=0, (55b) 

F i r 2 - t V 6 = 0 , (55c) 

\£F 2r 2-v3Fir 6=0, (55d) 

Aa>n+V1r8=0J (55e) 

F2r3+^Fif4+Acor6+ Vir7=0, (55f) 

V2r2+V1rQ+2Aoor^O) (55g) 

V2ri- Vm- 2Acor7- 0. (55h) 

The above set is a system of linear homogeneous 
algebraic equations which has a nontrivial solution only 
if the determinant of the coefficient matrix is zero. The 
determinant is obviously zero, because two rows are 
linear combinations of other rows. Since there are two 
dependent rows, the largest nonzero determinant, which 
is contained in this matrix, must be of order six or less. 
The order is six, because direct evaluation shows that 
none of the sixth-order determinants vanish, provided 
V2 is not equal to zero or dtzVi. Therefore, the rank of 
the coefficient matrix is six. A system of 8 linear 
homogeneous algebraic equations in 8 unknowns, with a 
coefficient matrix of rank 6, has 2 and only 2 linearly 
independent solutions. Each solution contains an arbi­
trary constant. We let the two constants be r3 and u. 
The first solution is obtained by setting ^4=0 in Eqs. 
(55), and the second by setting f3=0. 

Solution for f4=0: 

fi=-(Vi/Aw)r8 , 

r6= — (Vi/hta)n, 

r2=r6=r7=rs=0. 

Solution for rz=0: 

2V3F2[(Aco)2-y1
2] 

Aa»[Fi2+F2
2-2(Aco)2] 4 ' 

2^Fi[(Aco)2-F2
2] 

Aco[F1
2+F2

2-2(Aw)2] 4 ' 

\^(Aa))(F2
2-F1

2) 

Aco[F1
2+F2

2-2(Ao!)2] *' 

r2 = rz=r&=0. 

(56a) 

(56b) 

(56c) 

(57a) 

(57b) 

(57c) 

(57d) 

We look for adiabatic-passage inversion in each of the 
above solutions. Our approach directly follows the non-
precessional F2=0 case. 

Adiabatic passage for 7-4=0: 

KAJ \AJ J3 L 
F!2+F2

2+(Aw)2 

(Aco)2 ]^32. 
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When (Ao>)2»(Fi2+F2
2), | e |=r 8 . Therefore, we set 

\g\ =p3° and obtain 

±Aco 
f3== p3o. ( 5 8 ) 

lV1
2+V2

2+(A^Y2m 

Because the expression which multiplies p4° in the above 
equation is an odd function of Aco, p4 inverts in an 
adiabatic passage for F 2 ^0 or dbFi, provided that p3 is 
initially zero and remains zero throughout the passage. 

If p3 and pi both have nonzero values before the 
passage, the steady-state solution is a linear combina­
tion of the two independent solutions in Eqs. (56) and 
(57). Unfortunately, the quasi-steady-state method used 
in the n= 0 and r3—0 cases does not lead to an adiabatic-
passage solution when r3 and r± are both nonzero. One 
can take an arbitrary linear combination of the solutions 
in Eqs. (56) and (57) and add the squares of the compo­
nents of the resulting general r vector to get 1912. How­
ever, this sum will involve terms in r 3

2, r3r4, and r4
2, and 

it will not yield separate expressions for r% and r\ in 
terms of p3° and p4°. If we use the quasisteady-state 
approach we must be satisfied with either the 7-4=0 or 
the r3=0 solutions. 

The f4=0 solution has the greatest practical signifi­
cance. In order that p4 be initially zero, the initial 
population distribution must be a linear function of the 
energy for the states p, q, r. This is approximately true in 
thermal equilibrium if ito)0 is small compared to kT, be­
cause the exponential Boltzmann distribution is n,early 
linear over the energies Ep, Eq, and Er. We may 
reasonably assume that if p4 is zero before passage, it 
will remain so throughout. This is expected, because P2 
and p6 are zero during the passage, and therefore at all 
points we have from Eq. (37d) 

P4=v3F2p2-v3Fip6=0. 

Thus, if p4 is zero before the passage is started, then to 
the extent that the passage is adiabatic, p4 remains zero, 
and we obtain inversion of p3. As in the Mpq=Mqr case, 
inversion of p3 means that the p-q, q-r, and p-r tran­
sitions are simultaneously inverted. When O^Mpq 
T^Mqr^Oy and fiooo^kT, our dynamics have shown that 
the populations after passage are related to the popula­
tions before by Eqs. (49). 

We can summarize all of the three-level calculations 

This result is identical with Eq. (44), which applies to 
the case F2=0, except that V12 is replaced by 
(PY+ F2

2). Therefore, p3 inverts in an adiabatic passage 
when F 2 ^0 or dbVi, provided that p4 is initially zero 
and remains zero throughout the passage. 

Adiabatic passage for r3=0. 

in one statement: Except for the isolated cases Mpq=0 
and Mqr=0, the dynamical equations predict simul­
taneous ARP inversion of the three transitions for all 
combinations of the driving matrix elements, provided 
fio)o<&kT when Mpq9^Mqr. 
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APPENDIX 

A complete set of orthonormal Hermitian 3X3 basis 
matrices Uj is presented in Eqs. (27). The commutators 
\Vj,Uk]— UjUk— UkUj are given here. 

[J7y,J7o] = 0 for y = l , 2 , . " , 8 

[ t f i ,^ 2]=(W*7 3 

\V2,U%l=(i/WUi 

iuhu12=(imu2 
\V2,Ud=(i/y/l)U> 

p7 6 ,£ / 8>(W*7 2 

tUs}U2l=(i/^)Us 
Luhu{\=(i/WUt 
LUhU^{i/^I2)Ul 

[^8,l7l]=(*/V2)^5 

\VhUA~]=(i/^)^U, 

lUe1U12=(i/^2)(^UA+U7) 
\VuU7l=(iWUt 

f 12F2
2[(Aco)2- F1

2]2+12F1
2[(Aco)2- F2

2]2+3(Aco)2(F2
2- PY)2 1 

U|2= +1 k2. 
I (Aco)2[F!2+F2

2-2(Aco)2]2 J 

When (Aco)2^>(Fi2+F2
2), we have | Q\ =r4. Therefore, we set | p| =p4°, and obtain 

±Aco[F1
2+F2

2-2(Aco)2]p4° 
U~ (12F2

2[(Aco)2- Fi2]2+12Fi2[(Aa>)2- F2
2]2+3(Aco)2(F2

2- Fi2)2+ (Aco)2[Fi2+F2
2-2(Aco)2]2}1/2" 
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lU„Ui\=(i/^2)Us 

lUt,U^(i/yS)Ut 

lU,,Ut]=(i/tf)Ut 

IU4,U{\=0 

\V 4,17,1=0 

[ f / 8 ,C/ 7 ]=( i /^)2C/ 8 

[C/,,[/ s]=(i/v2)2f/8 

lUhU{\=(i/^y/3U, 

iu2,ur\=(i/^)^u, 

{UhU-r\= (i/yQU, 

ZUhUt]=(i/tf)Us. 
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Resonance Scattering of Phonons by Molecular Impurity Centers* 

MAX WAGNERJ 

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 
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The scattering of phonons at polyatomic (molecular) impurity centers cannot be handled by the regular 
Lifshitz method because of the additional degrees of freedom. A method is presented which makes it possible 
to eliminate the molecular coordinates by means of a molecular Green's function. This Green's function 
defines an effective disturbance in the lattice system with singular poles at the molecular frequencies. Thus 
the low rank t matrix of the scattering formalism, defining the scattering amplitude, has sharp resonances 
near the molecular frequencies. The abstract scattering formalism is applied to a simple example which 
exhibits the influence of librational modes of a molecule with strong internal bindings on phonon scattering. 
The t matrix for the chosen model is diagonalized by complete group theoretical reduction and reveals the 
structure of the molecular resonances explicitly. It is found that the resonance is very sharp if the molecular 
frequency is much smaller than the Debye frequency, and decreases for higher frequencies. 

INTRODUCTION 

R ECENTLY, the problem of phonon resonance scat­
tering at impurity centers has attracted much in­

terest, mainly because these resonances give rise to in­
dentations in the curves of thermal conductivity versus 
temperature. This was shown by Pohl1 for the system 
KC1:KN02 , and by Walker and Pohl2 for systems like 
KC1 :KI, KC1 :NaCl, etc. In the first case we have a mo­
lecular impurity center, in the second a monatomic one, 
and both experiments can be explained rather well by a 
quasiphenomenological theory given by the author in a 
previous paper.3 But as this theory still contains adjust­
able parameters, so it is desirable to investigate the un­
derlying scattering process in full detail. 

There is no difficulty in handling the monatomic im­
purities, because the number of degrees of freedom in the 
lattice is unchanged in this case and the application of 
the Lifshitz4 method is straightforward. Very recent cal­
culations by Krumhansl,5 Klein,6 and Takeno7 have 

* Supported by the U. S. Office of Naval Research. 
f Present address: IBM Research Center, York town Heights, 

New York. 
1 R. O. Pohl, Phys. Rev. Letters 8, 481 (1962). 
2 C. T. Walker and R. O. Pohl, Phys. Rev. 131, 1433 (1963). 
3 M. Wagner, Phys. Rev. 131, 1443 (1963). 
4 I. M. Lifshitz, Nuovo Cimento 3, Suppl. Al, 716 (1956). 
6 J. A. Krumhansl, presented at the International Conference on 

Lattice Dynamics, Copenhagen, Denmark, 1963 (to be published). 
6 M. V. Klein, Phys. Rev. 131, 1500 (1963). 
7 Sh. Takeno, Progr. Theoret. Phys. (Japan) 29, 191 (1963). 

shown that there are, under certain conditions, reso­
nances in the phonon scattering at monatomic centers 
due to the alterations in mass and force constants. These 
resonances can be said to be more or less "accidental"; 
they correspond to quasilocalized modes within the pho­
non bands which dissipate slowly into the surrounding 
lattice if the substitutional mass is very large,8 or if the 
force constants are weakened drastically near the im­
purity center, e.g., for U centers or F centers.5 

In contrast to that, there are, in general, more pro­
nounced resonances in the case of molecular impurities. 
This problem, however, seems to be much more com­
plicated because of the new degrees of freedom brought 
in by the molecular nuclei. The author9 has shown how, 
in principle, the additional coordinates can be excluded 
by means of a molecular Green's function and the Lif­
shitz method is then easily applied to the remaining un­
changed number of lattice coordinates. But there is now 
an additional effective disturbance which has poles a t 
the molecular frequencies via the molecular Green's 
function. These poles will produce new sharp resonances 
if they lie within the phonon bands. 

The abstract formalism for the general problem is out­
lined in Sees. I - I IL In the remaining sections we will 
choose a particularly simple model of a molecule exhibit-

J R. Brout and W. Visscher, Phys. Rev. Letters 9, 54 (1962). 
1 M. Wagner, Phys. Rev. 131, 2520 (1963). 


